
1

Internet Draft Lixia Zhang

Expires: April 1994 Xerox PARC

File: draft-braden-rsvp-00.ps Bob Braden

USC-ISI

Deborah Estrin

USC/USC-ISI

Shai Herzog

USC-ISI

Sugih Jamin

USC

October 1993

Resource ReSerVation Protocol (RSVP) {

Version 1 Functional Speci�cation

Status of Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the

Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note that

other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months. Internet-

Drafts may be updated, replaced, or obsoleted by other documents at any time. It is

not appropriate to use Internet-Drafts as reference material or to cite them other than

as a \working draft" or \work in progress."

Abstract

This memo describes version 1 of RSVP, a resource reservation setup protocol designed

for an integrated services Internet. RSVP provides receiver-initiated setup of resource

reservations for multicast or unicast data
ows, with good scaling and robustness prop-

erties.

1 Introduction

This memo describes RSVP, a resource reservation setup protocol designed for an integrated services

Internet [RSVP93,ISInt93]. A host invokes RSVP to request a speci�c quality of service (QoS) for a

data stream. Hosts and routers use RSVP to deliver these requests to the routers along the path(s)

of the data stream and to maintain router and host state to provide the requested service. This

generally requires reserving resources in those nodes.

Expires: April 1994 2

At each router along the path, RSVP passes a new resource reservation request to an admission

control routine, to determine whether there are su�cient resources available. If there are, the router

reserve the resources and updates its packet scheduler and classi�er control parameters to provide

the requested QoS [ISInt93].

The objectives and general justi�cation for RSVP design are presented in [RSVP93,ISInt93]. In

summary, RSVP has the following attributes:

� RSVP supports multicast or unicast data delivery and adapts to changing group membership

as well as changing routes.

� RSVP is not itself a routing protocol, but it is designed to use the existing unicast and

multicast routing protocols to determine the data path(s).

� RSVP reserves resources for simplex data streams.

� RSVP is receiver-oriented, i.e., the receiver of the data
ow is responsible for the initiation

and maintenance of the resource reservation.

� RSVP maintains \soft-state" in the routers, enabling it to gracefully support dynamic mem-

bership changes and automatically adapt to routing changes.

� RSVP provides several \reservation styles" with di�erent reservation models to �t a variety

of applications.

� RSVP provides transparent operation through routers that do not support it.

There are two aspects to RSVP, its reservation model and its protocol mechanisms. The RSVP

protocol mechanisms provide a general facility for creating and maintaining distributed reservation

state across a mesh of multicast delivery paths. These mechanisms treat the reservation parameters

as opaque data, except for certain well-de�ned operations, and simply pass them to the tra�c

control modules (admission control, packet scheduler, and classi�er) for interpretation. Although

the RSVP protocol mechanisms are independent of the encoding of these parameters, the encodings

must be de�ned in the reservation model that is presented to an application (see section 3.6.1).

In order to e�ciently accommodate heterogeneous receivers and dynamic group membership, RSVP

makes the receivers responsible for requesting resource reservations [RSVP93]. Each receiver can

request a reservation that is tailored to its particular requirement, and RSVP will deliver this

request to the routers along the reverse path(s) to the sender(s).

Sections 2.1 and 2.2 of this memo summarize the RSVP reservation model, while Sections 2.3

describes the protocol mechanisms. Sections 2.4 presents the host model, and Section 2.5 gives

examples of both model and mechanism. Section 3 presents the functional speci�cation for RSVP.

Expires: April 1994 3

2 RSVP Overview

2.1 RSVP Reservation Model

Figure 1 illustrates a single multicast distribution session. The arrows indicate data
owing from

senders S1 and S2 to receivers R1, R2, and R3, and the cloud represents the distribution mesh

created by the multicast routing protocol. Multicast distribution replicates each data packet from

a sender Si and delivers a copy to every receiver Rj (whether a packet actually arrives at Rj depends

on the speci�ed QoS and perhaps upon congestion encountered along the path). Each sender Si

and receiver Rj may correspond to a unique Internet host, or there may be multiple senders (e.g.,

multiple TV cameras) and/or receivers in a single host.

The RSVP model for data distribution is simplex, i.e., it reserves resources in only one direction

on a link, so that senders are logically distinct from receivers. However, the same host may act as

both sender and receiver.

Senders Receivers

() ===> R1

S1 ===> (Multicast)

() ===> R2

(distribution)

S2 ===> ()

(by Internet) ===> R3

(_____________________)

Figure 1: Multicast Distribution Session

All data packets in a session are addressed to the same IP destination address DestAddress. For

multicast delivery, DestAddress is the multicast group address to which the data is addressed, and

the receivers will have all \joined" this multicast group. For unicast delivery, DestAddress is simply

the unicast address of the single receiver. RSVP identi�es a session by DestAddress plus a 32-bit

stream identi�er called the destination stream id (DestSID). We use the term session socket for the

(DestAddress, DestSID) pair that de�nes a session. RSVP treats each session independently. In

the rest of this document, a particular session (hence, session socket) is always implied even if not

stated.

If a particular sender's
ow arriving at a router has no corresponding reservation in place, the

router will either drop the packets from the
ow or send them using a best-e�ort QoS. This choice

is controlled by each sender.

Depending upon the reservation style and the state already in place for the session, a new or

Expires: April 1994 4

modi�ed reservation request may result in a call to admission control. If an admission control call

fails, the reservation is rejected and an RSVP error message is sent downstream to the receiver(s)

responsible for it.

A single RSVP resource reservation request is de�ned by a
owspec together with a �lterspec; this

pair is called a Flow Descriptor. The
owspec speci�es the desired QoS in a quantitative manner,

e.g., the allowable delay, the average bandwidth, the maximum burstiness, etc [ISInt93,IServ93].

It is used to parametrize the packet scheduling mechanism in the router or host. The �lterspec

de�nes the set of data packets to receive this service.

A
owspec is opaque to RSVP. However, given a pair of
owspecs Fls1 and Fls2, RSVP needs to

be able to: (1) determine whether they are identical, (2) determine whether Fls1 \ >

00

Fls2, or

that they cannot be compared, and (3) �nd a third
owspec Fls3 that dominates both (Fls3 \ >

00

Fls1 and Fls3 \ >

00

Fls2), even if Fls1 and Fls2 cannot be compared. A
owspec may be a complex

multi-dimensional vector; the relationship Fls1 \ >

00

Fls2, when it is de�ned, indicates that Fls1

represents at least as strict a request (and hence represents at least as large a resource commitment)

as Fls2.

The data packets selected by a particular �lterspec will presumably be all be addressed to DestAd-

dress. The �lterspec may also select data packets only from particular senders Si; the set of senders

selected by a particular �lter is referred to as the scope. A �lter may further reduce the data packet

subset based on
ow demultiplexing �elds such as a UDP port, or perhaps on some hierarchical

encoding bits within the application layer.

2.2 Reservation Styles

RSVP has a number of distinct reservation styles, which determine the precise reservation model

for applications. The following reservation styles have been de�ned so far; others may be introduced

in the future.

1. Wildcard-Filter

Using the Wildcard-Filter (WF) style, a receiver creates a single reservation, or resource

\pipe", along each link, shared among all senders for the given session. The size of this

\pipe" is the maximum of the resource requests for that link from all receivers, independent

of the number of senders using it.

The term `wildcard' refers to a �lter scope that implicitly selects all senders, inplicitly ex-

tending to new senders as soon as they start sending to the group.

2. Fixed-Filter

Using the Fixed-Filter (FF) style, each receiver selects the particular sender whose data

packets it wants to receive, and it speci�es a corresponding
owspec for that sender.

Expires: April 1994 5

Receivers that select the same sender will share the reservation for that sender (indeed, due

to multicasting there is only one stream of data packets from any Si in a particular router,

regardless of the number of receivers Rj downstream). The shared reservation for Si will

be greater than (in the sense of \ >

00

as discussed earlier) or equal to all of the individual

owspecs from receivers Rj that selected Si.

However, reservations for di�erent senders are distinct; they do NOT share a common pipe.

The total reservation on a link for a given session is the sum over the reservations for di�erent

senders.

A Fixed-Filter reservation request from a particular receiver Rj generally contains a list of

Flow Descriptors, each consisting of a �lterspec (specifying some sender Si) and a correspond-

ing
owspec. If a receiver using the FF reservation style changes its sender selection during

the session, this is treated as a new reservation that is subject to admission control and may

fail. The receiver may also modify the
owspecs, again subject to admission control.

3. Dynamic-Filter

Using the Dynamic-Filter (DF) style, each receiver creates N distinct reservations to carry

ows from up to N di�erent senders. A DF style reservation also speci�es a list of K �lterspecs

(0 <= K <= N), de�ning particular senders to use these reservations, as well as a common

owspec. Like the FF style, the DF style causes distinct reservations for di�erent senders.

A later DF reservation from the same receiver may specify the same value of N and the same

common
owspec but a di�erent selection of particular senders, without a new admission

control check. This is known as channel switching, in analogy with a television set. Each

DF style reservation may be said to be \owned" by the receiver that established it and is

permitted to switch channels (change senders) used by that reservation.

If a receiver using the DF reservation style changes the number of distinct reservations N or

the common
owspec, this is treated as a new reservation that is subject to admission control

and may fail. Those data packets for the same session socket but from senders that are not

currently selected may either be dropped or simply sent best-e�ort.

The essential di�erence between the FF and DF styles is that the latter allows dynamic channel

switching without admission control. Once a DF-style reservation has been made, the receiver may

switch channels without danger of an admission control failure due to limited resources (unless the

route changes to a lower-capacity path or new senders appear).

In order to provide admission-free channel switching, the DF style must cause the routers must

reserve the requested bandwidth for all the possible senders Si, even though some of this bandwidth

may be unused at any one time, or always. DF reservations may therefore have a signi�cant cost

to the Internet in under-utilized reservations.

Wildcard-Filter reservations are appropriate when the total bandwidth required is independent of

the number of senders. This is true for audio conferences, where a limited number of people talk at

Expires: April 1994 6

once. Thus, each receiver might issue a Wildcard-Filter reservation for twice one audio channel (to

allow some over-speaking). On the other hand, the Fixed-Filter and Dynamic-Filter styles create

independent reservations for the
ows from di�erent senders; this is required for video signals,

whose `silence' periods are typically uncoordinated among di�erent senders.

2.3 RSVP Protocol Mechanisms

2.3.1 RSVP Messages

RSVP messages are sent as IP datagrams; thus, RSVP occupies the place of a transport protocol

in the protocol stack. However, like ICMP and IGMP, RSVP is really an Internet control protocol;

it does not carry any application data, and its messages are processed by the routers in the path.

Each receiver host sends RSVP reservation, or Resv messages into the Internet, carrying Flow

Descriptors requesting the desired reservation; see Figure 2. These reservation messages must

follow the reverse of the routes the data packets will use, all the way upstream to all the send that

lie within the scope of active reservations. These Resv messages are �nally delivered to the sender

hosts, so that the senders can set up appropriate Tra�c Control parameters for the �rst hop.

In order to route the Resvmessages in the reverse direction from each receiver to all selected senders

for a given session socket, each sender must transmit RSVP Path messages forward along the uni-

/multicast routes provided by the routing protocol(s). These Path messages store path state in all

the intermediate routers, e�ectively combining all the routing trees given by the routing protocol

for the same DestAddress.

Sender Receiver

Path --> ()

Si =======> (Multicast) Path -->

<-- Resv () =========> Rj

(distribution) <-- Resv

(_____________________)

Figure 2: RSVP Messages

The minimum information content of a Path message is a list of sender IP addresses, since this is

required for routing Resv messages. However, Path messages may carry the following additional

information:

� A template describing the format of data packets that the sender will originate.

This template takes the form of two bitstrings forming a (value, mask) pair. Zero mask bits

Expires: April 1994 7

represent \don't care" (variable) bits in data packets. If present, this template is used by

RSVP to validate the �lters in a Resv message. Without such a template in the path state,

there will be no feedback (except poor service) to the receiver that sets an impossible �lter

by mistake.

� A
owspec de�ning an upper bound on the tra�c that will be generated.

This
owspec can be used by RSVP to prevent over-reservation on the non-shared links

starting at the sender [RSVP93].

A (template,
owspec) pair in a Path message is called a Sender Descriptor.

2.3.2 Soft State

To maintain reservation state, RSVP uses \soft state" in the router and host nodes. RSVP soft

state is created and maintained in two directions by Path and Resv messages. It is periodically

refreshed by messages that are identical to the message that established the state, and it is removed

at each node by a timer-driven cleanup procedure if no refresh message is received within a cleanup

timeout interval. If a route changes, the next copy of the message will initialize the state on the

new route, while the state on the now-unused segment of the route will time out. Thus, whether a

message is \new" or a \refresh" is determined separately for each message at each node, depending

upon the state at that node. (This document will use the term \refresh message" in this e�ective

sense, to indicate an RSVP message that does not modify the existing state at the node in question.)

RSVP sends its messages as IP datagrams, without reliable delivery. If a reservation request fails, an

RSVP error message is returned to the receiver; however, RSVP sends no positive acknowledgment

messages to indicate success. Periodic transmission of refresh messages by hosts and routers should

replace any lost RSVP messages.

If the set of senders Si or receivers Rj changes, or if any of the reservation requests change, the

RSVP state is adjusted accordingly. To modify a reservation, a receiver simply starts sending the

new values; it is not necessary to \close" the old reservation �rst. RSVP believes the latest Path

and Resv messages (ignoring the possibility of reordering).

When a Resv message is received at a router or sender host, the RSVP module checks whether

the message is a new or modifedi reservation request or whether it simply refreshes an existing

reservation. A new or modi�ed request is passed to the admission control module for a decision.

If the reservation is accepted, RSVP sets up (or modi�es) the reservation and �lter state. It also

forwards the Resv message to the next reverse-hop router(s) or sender host(s), using the path state.

If the request is rejected, RSVP discards the Resv message and returns a RSVP error message to

the receiver host that originated it. If the modi�cation replaces some previous state, RSVP may

immediately remove the old state, or it may simply let the old state time out since it is no longer

Expires: April 1994 8

being refreshed.

Previous Incoming Outgoing

Hops Interfaces Interfaces

______ _____________________

| | Path --> | | Path -->

| |-----------| |---------------

|______| <-- Resv | | <-- Resv

data --> | | data -->

| Router |

______ | |

| | Path --> | | Path -->

| |-----------| |---------------

|______| <-- Resv | | <-- Resv

data --> |_____________________| data -->

Figure 3: Router Using RSVP

Figure 3 illustrates the model of a router used by RSVP. The data arrives from a previous hop

through a corresponding incoming interface and departs through an outgoing interface. The in-

coming interfaces shown in Figure 3 may be physical interfaces (e.g., to point-to-point links), or

they may be logical interfaces, multiple paths using the same physical interface to a shared medium

(e.g., an Ethernet). Output is designated by the outgoing interface rather than by a \next hop"

address to be consistent with IP multicast routing. Since the same host may be both sender and

receiver for a given session, the same physical interface may act in both the incoming and outgoing

roles.

2.3.3 Merging RSVP Messages

To control its protocol overhead, RSVP supports merging of multiple Path and Resv messages

for the same session socket. Those messages that cause a state change are forwarded without

delay, while the rest may be \merged" into fewer messages, perhaps only one. Merging requires

synchronization among the messages being merged. This is accomplished by saving the state of

received messages, dropping the messages, and periodically generating and forwarding cumulative

messages in their place. Thus, refresh messages are created hop-by-hop, at a rate determined by

the refresh period.

Messages that modify the state in a node (\new" messages) must be forwarded without delay.

Thus, the refresh period does not a�ect the rate at which new state propagates from end to end.

For Path messages, merging implies collecting together the Sender Descriptors from multiple incom-

Expires: April 1994 9

ing messages into a single outgoing Path message. For Resv messages, merging generally implies

that only the essential (e.g., the largest) refresh reservation messages need be forwarded once per

refresh period; redundant messages can be dropped. A successful reservation request will propagate

as far as the closest point along the sink tree to the sender(s) where a reservation level equal or

greater than that being requested has been made. At that point, the merging process will drop it

in favor of a larger reservation.

As a result of merging, the number of RSVP control messages will increase less than linearly with

the number of senders and receivers in a session. There is no merging across sessions, however, so

the number of RSVP messages will increase linearly with the number of sessions.

The refresh period and the cleanup timeout must obey some general principles.

A. The cleanup timeout interval should be long enough to avoid reservation-
apping due to route-

apping.

If route
apping does occur, persistent state will allow duplicate reservations to be created

along the alternate paths. This duplication is desirable to prevent interruptions of service

quality due to route
apping.

B. The refresh period should be short enough in order to adapt quickly to route changes.

C. The refresh period must be long enough to control RSVP overhead.

Applications may di�er in their sensitivity to outages, and should be able to have some control

over the refresh period for their session state.

2.4 Host Model

Before a session can be created, the session socket (comprised of DestAddress and DestSID) must

be assigned and communicated to all the senders and receivers by some out-of-band mechanism.

In order to join an RSVP session, the end systems perform the following actions.

H1 A receiver joins the multicast group speci�ed by DestAddress.

H2 A potential sender starts sending RSVP Path messages to the DestAddress.

H3 A receiver listens for Path messages.

H4 A receiver starts sending appropriate Resv messages, specifying the desired Flow Descriptors.

There are several synchronization issues.

� Suppose that a new sender starts sending data but there are no receivers. There will be no

multicast routes beyond the host (or beyond the �rst RSVP-capable router) along the path;

Expires: April 1994 10

the data will be dropped at the �rst hop until receivers(s) do appear (assuming a multicast

routing protocol that \prunes o�" or otherwise avoids unnecessary paths).

� Suppose that a new sender starts sending Path messages (H2) and immediately starts sending

data, and there are receivers but no Resv messages have reached the sender yet (e.g., because

its Path messages have not yet propagated to the receiver(s)). Then the initial data may

arrive at receivers without the desired QoS.

� If the receiver starts sending Resv messages (H4) before any Path messages have reached it,

RSVP will return Err messages.

The receiver may simply choose to ignore such error messages, or it may avoid them in one of

two ways. (1) It may synchronize in a higher-level protocol, e.g., a conference control protocol

might ensures that Resv messages are not sent by any participant until all have started to

send Path messages. (2) The receiver may synchronize using RSVP messages, by waiting for

Path messages before sending Resv messages.

The interface (API) between RSVP and an application is not de�ned in this protocol spec, as it

may be host-system dependent. However, Section 3.6.2 discusses the general requirements and

presents a generic API.

2.5 Examples

Figure 4 shows schematically a router with two previous hops (labeled a and b) and two outgoing

interfaces (labeled c and d). There are three upstream senders; packets from sender S1 (S2 and S3)

arrive through previous hop a (b, respectively). There are also three downstream receivers; packets

bound for R1 and R2 (R3) are routed via outgoing interface c (d, respectively).

a | | c

(S1) ---------->| |----------> (R1, R2)

| Router |

b | | d

(S2,S3) ------->| |----------> (R3)

|________________|

Figure 4: Router Con�guration

We use the following notation for a Resv message sent by receiver Rj:

1. Wildcard-Filter

WF(Rj; *frg)

Here *frg" represents a Flow Descriptor with a \wildcard" �lter (choosing all senders) and

a
owspec of quantity r. For simplicity we imagine here that
owspecs are one-dimensional,

Expires: April 1994 11

de�ning for example the average bandwidth, and state them as a multiple of some unspeci�ed

base resource quantity B.

2. Fixed-Filter

FF(Rj; S1fr1g, S2fr2g, ...)

This message carries a list of sender,
owspec pairs, i.e., Flow Descriptors.

3. Dynamic-Filter

DF(nB, Rj;) or DF(nB, Rj; S1, ...)

This message carries the number n of channels to be reserved, each channel having bandwidth

B. It also has an list, perhaps empty, of senders. Since each channel must carry the same

bandwidth B, we omit
owspecs after the semicolon.

Figure 5 shows Wildcard-Filter reservations. The \Receive" column shows the Resv messages

received over outgoing interfaces c and d, and the \Reserve" column shows the resulting reservation

state for each interface. The \Send" column shows the Resv messages forwarded to previous

hops a and b. In the \Reserve" column, each box represents one reservation \channel", with

the corresponding �lter.

As a result of merging, only the message with the largest
owspec is forwarded upstream to each

previous hop. When the
owspecs are equal, the message whose receiver IP address is numerically

larger is sent. Here we assume that IPaddr(R1) > IPaddr(R3) so the R1 reservation is sent up-

stream. Merging will therefore delete the messages enclosed in square brackets. In the outgoing

interface c, there is a common reserved channel shared by R1 and R2.

Figure 6 shows Fixed-Filter style reservations. Merging takes place among the
ow descriptors

(i.e., �lter spec,
owspec pairs); the unmerged messages are not shown. For example, the message

forwarded to previous hop b, towards S2 and S3, contains
ow descriptors received from outgoing

interfaces c and d. Similarly, when FF(R2; S1fBg) and FF(R3; S1f3Bg) are merged, the result is

the single message FF(R3; S1f3Bg) sent to previous hop a, towards S1.

For each outgoing interface, there is a private reservation for each source that has been requested,

but this private reservation is shared among the receivers that made the request.

Expires: April 1994 12

|

Send | Reserve Receive

|

| ________

WF(R1; *{3B}) <- (a) | (c) | *{3B} | (c) <- WF(R1; *{3B})

| |________|

[WF(R2; *{B}) <- (a)] | [(c) <- WF(R2; *{B})]

|

[WF(R3; *{B}) <- (a)] |

------------------------|--

| _______

WF(R1; *{3B}) <- (b) | (d) | *{B} | (d) <- WF(R3; *{B})

| |_______|

[WF(R2; *{B}) <- (b)] |

|

[WF(R3; *{B}) <- (b)] |

Figure 5: Wildcard-Filter Reservation Example

|

Send | Reserve Receive

|

| ________

FF(R3; S1{3B}) <- (a) | (c) | S1{B} | (c) <- FF(R2; S1{B}, S2{5B})

| |________|

| | S2{5B} |

| |________|

------------------------|---

| ________

<- (b) | (d) | S1{3B} | (d) <- FF(R3; S1{3B}, S3{B})

FF(R3; S2{5B}, S3{B}) | |________|

| | S3{B} |

| |________|

Figure 6: Fixed-Filter Reservation Example

Expires: April 1994 13

Figure 7 shows an example of Dynamic-Filter reservations. Within the reservation boxes, the

receiver that owns the reservation is shown followed by a colon. R2 and R3 have made reservations

for which there is currently no �lter, as indicated by a �lter of `?'.

|

Send | Reserve Receive

|

| ___________

DF(2, R1; S1) <- (a) | (c) | R1: S1{B} | (c) <- DF(2, R1; S1, S2)

| |___________|

DF(2, R2;) <- (a) | | R1: S2{B} | (c) <- DF(2, R2; S2)

| |[R2: S2{B}]|

DF(2, R3; S1) <- (a) | |___________|

| | R2: ?{B} |

| |___________|

------------------------|---

| ___________

DF(2, R1; S2) <- (b) | (d) | R3: S1{B} | (d) <- DF(2, R3; S1)

| |___________|

DF(2, R2; S2) <- (b) | | R3: ?{B} |

| |___________|

DF(2, R3;) <- (b) |

Figure 7: Dynamic-Filter Reservation Example

Both R1 and R2 have requested reservations for S2. Since there is only one stream of packets from

S2, only R1's reservation is actually made. However, the router keeps a record of R2's request as a

\hidden reservation", shown in square brackets. If R1 removes its reservation for S2, the node must

check for a hidden reservation for the same source, so that it can reassign the channel to R2 without

waiting for R2's next refresh. This use of hidden reservations for Dynamic-Filter reservations is

necessary to avoid new admission control decisions (which might fail) and to ensure continuity of

service.

A router should not reserve more Dynamic-Filter channels than the number of upstream sources.

Thus, in Figure 7, both R1 and R2 request that admission control admit two channels worth of

bandwidth. However, there are only 3 sources upstream from this point, so these requests are

satis�ed with a total of 3 channel reservations.

Since there is only one source upstream from previous hop b, the �rst parameter of the DF message

(the count of channels to be reserved) could be decreased to 1 in the forwarded reservations.

However, this is unnecessary because the routers upstream will reserve only one channel, regardless.

We note that Dynamic-Filter requests cannot be merged, since they tie each reservation to a

particular owner. A node is permitted to include Flow Descriptors that are not relevant to the

Expires: April 1994 14

path (i.e., not upstream along that path). Thus, in Figure 7, the node could forward each of the

three Resv messages exactly as received from c and d, to both previous hops a and b; the previous

hop would ignore the irrelevant Flow Descriptors in each case.

As another example of these concepts, Figure 8 shows the previous hop router on incoming interface

(a) in Figure 7. Here there are two hidden reservations.

Send | Reserve Receive

| ___________

DF(2, R1; S1) <- (a) | (c) | R1: S1{B} | (c) <- DF(2, R1; S1)

| | |

DF(2, R2;) <- (a) | |[R2: ?{B}]| (c) <- DF(2, R2;)

| | |

DF(2, R3; S1) <- (a) | |[R2: S1{B}]| (c) <- DF(2, R3; S1)

| |___________|

Figure 8: Previous Hop to Figure 7 interface (a).

Expires: April 1994 15

3 Functional Speci�cation

There are currently three types of RSVP messages: Path, Resv, and Err

_

A fourth type, Teardown

is under consideration.

3.1 Message Formats

3.1.1 Path Message

0 1 2 3

+-------------+-------------+-------------+-------------+

| Vers | Type | Flags | RSVP Checksum |

+-------------+-------------+-------------+-------------+ ---

| DestAddress | Session

+-------------+-------------+-------------+-------------+

| DestSID | Socket

+-------------+-------------+-------------+-------------+ ---

| Refresh Period |

+-------------+-------------+-------------+-------------+

| State TTL Time |

+-------------+-------------+-------------+-------------+

| Previous Hop Address |

+-------------+-------------+-------------+-------------+

| /////////////// | SD Count |

+-------------+-------------+-------------+-------------+

| Sender Descriptor List |

+-------------+-------------+-------------+-- ...

IP Fields:

Protocol

46

IP Source Address

The IP address of the host or router sending this message.

IP Destination Address

The IP address of the data destination (DestAddress).

RSVP Fields:

Vers

Version number. This is version 1.

Expires: April 1994 16

Type

1 = Path Message

Flags

1 = No-Refresh

A Path message received with this
ag bit on will be forwarded with no (further)

merging, the path state TTL timer(s) will not be reset (as if no refresh message

had been received), and a refresh message will not be generated during the current

refresh period for the senders listed, However, if there is no path state a Pathmessage

containing this
ag bit will be ignored.

For further discussion of the use of this bit, see Section 3.3 below.

8 = Drop

If this
ag bit is on then data packets will be dropped when they are destined to

this session but their sender is not currently selected by any �lter. If this
ag bit is

o�, such data packets will still be forwarded but without a reservation, i.e., using a

best-e�ort class.

RSVP Checksum

A standard TCP/UDP checksum, over the contents of the RSVP message with the

checksum �eld replaced by zero.

DestAddress, DestSID

The IP address and stream Id identifying the session, i.e., the session socket.

Previous Hop Address

The IP address of the interface through which the host or router last forwarded this

message.

The Previous Hop Address is used to support reverse-path forwarding of Resv messages.

This �eld is initialized by a sender to its IP address (see IP Source Address above) and

must be updated at each router hop as the Path message is forwarded.

Refresh Period

This �eld speci�es the refresh timeout period in milliseconds. See Section 3.3 below.

State TTL Time

This �eld speci�es the time-to-live for soft state, in milliseconds. It determines the

cleanup timeout period; see Section 3.3 below.

See Section 3.2 below.

SD Count

Count of Sender Descriptors that follow.

Sender Descriptor List

A list of Sender Descriptors (see below). The order of entries in this list is irrelevant.

Each sender must periodically send a Path message containing a single Sender Descriptor describing

its own data stream. These messages are addressed to the uni-/multicast destination address for

Expires: April 1994 17

the session, and they are forwarded to all receivers, following the same paths as a data packet from

the same sender. Path messages are received and processed locally to create path state at each

intermediate router along the path.

If an error is encountered while processing a Path message, an RSVP Err message is sent to all the

sender hosts listed in the Sender Descriptor List.

Path messages are distributed from senders to receivers along the exact paths that the data will

traverse, using uni-/multicast routing. This distribution actually takes place hop-by-hop, allowing

RSVP in each router along the path to observe and modify the message. Routing of Path messages

is based on the sender address(es) from the Sender Descriptor(s), not the IP source address. This

is necessary to prevent loops; see Section 3.2.

Each Sender Descriptor consists of a sender template that de�nes the format of data packets and a

corresponding Flowspec that describes the tra�c characteristics. The template is composed of an

explicit IP address plus a variable-length mask-and-value pair VF, in the following format:

+-----------+-----------+-----------+-----------+

| Sender IP Address |

+-----------+-----------+-----------+-----------+

| VFlength | VFoffset |

+-----------+-----------+-----------+-----------+ ---

| V: VF Value Part | 4*VFlength

/ / octets

/ /

+-----------+-----------+-----------+-----------+ ---

| M: VF Mask Part | 4*VFlength

/ / octets

/ /

+-----------+-----------+-----------+-----------+ ---

The value M and the mask V each have length 4�VFlength octets. M and V de�ne a �lter using

a simple mask-and-match algorithm applied to the packet at 4�VFo�set octets from the beginning

with the internet layer header. The VF part should not include the sender IP address or DestAd-

dress; RSVP will e�ectively embed these explicit addresses into the template before using it to

validate a �lterspec.

Expires: April 1994 18

3.1.2 Resv Message

Resv messages are sent from receivers to senders along reverse paths established by Path messages.

0 1 2 3

+-------------+-------------+-------------+-------------+

| Vers | Type | Flags | RSVP Checksum |

+-------------+-------------+-------------+-------------+ ---

| DestAddress | Session

+-------------+-------------+-------------+-------------+

| DestSID | Socket

+-------------+-------------+-------------+-------------+ ---

| Refresh Period |

+-------------+-------------+-------------+-------------+

| State TTL Time |

+-------------+-------------+-------------+-------------+

| RecvAddress |

+-------------+-------------+-------------+-------------+

| Dynamic Reservation Count | FD Count |

+-------------+-------------+-------------+-------------+

| Flow Descriptor List |

+-------------+-------------+-------------+-- ...

The �elds are the same as de�ned earlier for a Path message, except for the following:

IP Fields:

IP Source Address

The IP address of the host or router sending this message.

IP Destination Address

The IP address of the next-hop router or host to which this message is being sent.

RSVP Fields:

Type

2 = Resv Message

Flags

1 = No-Refresh

A Resv message received with this
ag bit on will be forwarded without (further)

merging, the TTL timer for the reservation state to which it refers will not be reset

(as if no refresh message had been received), and no hop-by-hop refresh message

will be generated during the current refresh period for the receiver speci�ed by

Expires: April 1994 19

RecvAddress. However, if there is no reservation state for this receiver or no path

state for this session, a Resv message containing this
ag bit will be ignored.

For further discussion of the use of this bit, see Section 3.3 section below.

The following
ag bits indicate the reservation style.

2 = Fixed-Filter

4 = Dynamic-Filter

RecvAddress

The IP address of the receiver that originated this message.

Dynamic Reservation Count

The number of channels to be reserved, for a Dynamic-Filter style reservation.

If the ResvStyle is Dynamic-Filter, this integer value must be constant and equal or

greater than (FD Count). For other ResvStyles, this �eld must be zero.

FD Count

Count of Filter Specs in the Flow Descriptor List.

Flow Descriptor List

A list of Flow Descriptors, i.e., (Filterspec,
owspec) pairs, to de�ne individual reser-

vations for Fixed-Filter and Dynamic-Filter styles. The �rst entry in the list may have

special meaning (see below); the order of later entries is irrelevant.

Each Flow Descriptor has the following form:

+-------------+-------------+-------------+----------//-+

| FiltSLen | Filter Spec ... |

+-------------+-------------+-------------+----------//-+

| FlowSLen | ... Flow Spec ... |

+-------------+-------------+-------------+----------//-+

Here FiltSLen and FlowSLen are one-octet �elds specifying the lengths in octets (including the

length byte) of the Filterspec and
owspec, respectively.

A Wildcard-Filter style reservation is encoded as a special case of a Fixed-Filter reservation: a single

Fixed-Filter channel in which the Filterspec speci�es the wild-card �lter, i.e., it selects packets from

all senders Si to the given session socket.

The following speci�c rules hold for di�erent reservation styles.

� Wildcard-Filter

To obtain Wildcard-Filter service, set FD Count = 1 and include a single Flow Descriptor

whose Filterspec part is a wild card, i.e., selects all senders. and whose
owspec part de�nes

the desired
ow parameters.

Expires: April 1994 20

� Fixed-Filter

Include a list of FD Count >= 1 Flow Descriptors, each de�ning a sender Filterspec and a

corresponding
owspec.

� Dynamic-Filter

Include max(1, FD Count) Flow Descriptors in the message. Here the FD Count speci�es the

number of sender Filterspecs that are included. If DC is the Dynamic Reservation Count,

then DC >= FD Count >= 0.

The Flowspec part of the �rst Flow Descriptor de�nes the desired size of all the DC channels

that are reserved. The Flowspec parts of later Flow Descriptors (if any) are ignored.

3.1.3 Err Message

0 1 2 3

+-------------+-------------+-------------+-------------+

| Vers | Type | Flags | RSVP Checksum |

+-------------+-------------+-------------+-------------+ ---

| DestAddress | Session

+-------------+-------------+-------------+-------------+

| DestSID | Socket

+-------------+-------------+-------------+-------------+ ---

| Error Code | Error Value | List Count |

+-------------+-------------+-------------+-------------+

| Sender|Flow Descriptor List |

+-------------+-------------+-------------+-- ...

The �elds are the same as in a Path message, de�ned earlier, except for the following:

RSVP Fields:

RSVPType

4 = Err message

Flags

0xxxxxxx = Towards receiver(s)

1xxxxxxx = Towards sender(s)

Error Code

A one-octet error description.

01 = No path information for this Resv (R)

Expires: April 1994 21

02 = No Sender information for this Resv (R)

There is path information, but it does not include the sender speci�ed in one or

more of the Filterspecs listed in the Resv messager.

03 = Insu�cient memory (S,R)

04 = Incorrect Dynamic Reservation Count (R)

Dynamic Reservation Count is zero or less than FD Count.

05 = Reservation problem (R)

The Error Value octet an error code speci�c to a lower-level routine. Possible

reasons include: not enough resource available,
owspec syntax error,
owspec

value error (internal inconsistencies of values), or Flowspec feature not sup-

ported.

07 = Unknown RSVPType �eld.

08 = Unknown RSVP version.

09 = FD Count Wrong

FD Count does not match length of message.

Error Value

Speci�c cause of the error described by the Error Code. Meanings are generally de�ned

outside RSVP.

Sender|Flow Descriptor List

Optional list of Sender Descriptors (towards sender) or Flow Descriptors (towards re-

ceiver) indicating which message triggered the error.

The message may include a list of one or more descriptors to which the same error applies. An

acceptable implementation may send a single descriptor per Err message, and may therefore send

multiple Err messages as the result of one Path or Resv message.

If an error is encountered while processing a Resv message, an RSVP Err message must be sent to

all receivers responsible for the reservation. However, in the case of shared Fixed-Filter reservations,

the node that detects the error does not have a record of all the responsible receivers; the merging

process downstream will have dropped all but one of the receiver identities. Therefore, the Err

message is addressed to the session DestAddress and uni-/multicast to all receivers downstream

from the node detecting the error.

This may deliver the Err message to irrelevant receivers as well as all relevant ones. The API

in the receiver hosts is therefore asked to �lter such Err messages, delivering them only to those

applications that have made a reservation for the sender speci�ed in the message.

Expires: April 1994 22

3.1.4 Tear Message

The Teardown message is intended to force state to be deleted immediately, without waiting for

the cleanup timeout period. It is an optimization, to allow resources to be freed more quickly.

However, like the other RSVP messages, it is not reliably delivered.

State can only be removed by Teardown if it is not shared. In particular, Wildcard-Filter and

Fixed-Filter reservations may be shared among multiple receivers, and due to merging RSVP does

not keep track of all the responsible receivers; in these cases, teardown is not possible.

A more complete de�nition of Teardown messages is future work.

3.2 Avoiding Message Loops

RSVP routes its control messages, and every routing procedure must avoid looping packets. The

merging of RSVP messages delays forwarding at each node for up to one refresh period. This may

avoid high-speed loop, but there can still be \slow" loops, clocked by the refresh period; the e�ect

of such slow loops is to keep state active forever, even if the end nodes have ceased refreshing it.

RSVP uses the following rules to prevent looping messages.

1. When an RSVP message is received on through particular incoming Interface F, the message

must not be forwarded out F as an outgoing interface. This implies that RSVP must keep

track of the interface through which each message is received, to avoid forwarding it out

that interface. Note that, although RSVP distinguishes incoming from outgoing interfaces,

in many cases the same physical interface will play both roles.

2. When a Path message is received, a route must be computed for each of its sender Flow

Descriptors. These routes, obtained from the uni/multicast routing table, generally depend

upon the (sender host address, destination address) pairs. Each route consists of a list of

outgoing interfaces; these lists (with the incoming interfaces deleted by rule (1)) are used to

create merged Path messages to be forwarded through the outgoing interfaces.

Assuming that multicast routing is free of loops, Pathmessages cannot loop even in a topology

with cycles.

Since Path messages don't loop, they create path state de�ning a loop-free path to each

sender. As a result, Resv messages directed to particular senders cannot loop. However, this

cannot protect against looping Resvmessages that are directed towards all senders (\wildcard"

sender). The following three rules are needed for this purpose.

3. A Resv message whose RecvAddress matches one of the IP addresses of the local node must

be discarded without processing.

Expires: April 1994 23

a | | c

(R1, S1) <----->| Router |<-----> (R2, S2)

|________________|

Send & Receive on (a) | Send & Receive on (c)

|

WF(R2; *{3B}) <-- (a) | (c) <-- WF(R2; *{3B})

|

WF(R1; *{4B}) --> (a) | (c) --> WF(R1; *{4B})

|

|

Reserve on (a) | Reserve on (c)

__________ | __________

| * {4B} | | | * {3B} |

|__________| | |__________|

|

Figure 9: Example: Rule (1) for Preventing Loops.

4. Each Resvmessage carries a receiver address. When the choice of address to place in a merged

Resvmessage is otherwise arbitrary, RSVP must use the IP address that is numerically largest.

5. When a Resv message is received, the Reverse Path Forwarding rule is applied to the receiver

address in the message: the message is discarded unless it arrived on the interface that is the

preferred route to the receiver.

Figure 9 illustrates the e�ect of the rule (1) applied to Resvmessages. It shows a transit router, with

one sender and one receiver on each side; interfaces a and c therefore are both outgoing interfaces

and physical previous hops. Both receivers are making a Wildcard-Filter style reservation, in which

the Resvmessage is to be forwarded to all previous hops for senders in the group, with the exception

of the interface through which it arrived.

3.3 Soft State Management

The RSVP state associated with a session in a particular node is divided into atomic elements

that are created, refreshed, and timed out independently. The atomicity is determined by the

requirement that any sender or receiver may enter or leave the session at any time, and its state

should be created and timed out independently.

Management of RSVP state is complex because there is not generally a one-to-one correspondence

between state carried in RSVP control messages and the resulting state in nodes. Due to merging,

a single message contain state referring to multiple stored elements. Conversely, due to reservation

Expires: April 1994 24

sharing, a single stored state element may depend upon (typically, the maximum of) state values

received in multiple control messages.

For each element, there are two time parameters controlling the maintenance of soft state: the

refresh period R and the TTL (time-to-live) value T. R speci�es the period between successive

refresh messages over the same link. T controls how long state will be retained after refreshes stop

appearing.

Path and Resv messages specify both R and T. When messages are merged and forwarded to the

next hop, R should be the minimum R that has been received, and T should be the maximum T

that has been received. Thus, the largest T determines how long state is retained, and the smallest

R determines the responsiveness of RSVP to route changes. In the �rst hop, they are expected to

be equal. The RSVP API should set a con�gurable default value, which can be overridden by an

application for a particular session.

To avoid gaps in user service due to lost RSVP messages, RSVP should be forgiving about missing

refresh messages. A node should not discard an RSVP state element until K * Tmax has elapsed

without a refresh message, where Tmax is the maximum of the T values it has received. K is some

small integer; K-1 successive messages may be lost before state is deleted. Currently K = 3 is

suggested.

Let X indicate a particular message type (either "Path" or "Resv") and a particular session. Then

each X message from node a to node b carries refresh period Rab and TTL time Tab.

� As X messages arrive at node b, the node computes and saves both the min over the Rab

values (min(Rab)) and the max over the Tab values (max(Tab)) from these messages.

� The node uses K * max(Tab) as its cleanup timeout interval.

� The node uses min(Rab's) as the refresh period.

� Each refresh message forwarded by node b to node c has Tbc = max(Tab) and Rbc =

min(Rab)

� A node may impose an upper bound Tmax and a lower bound Rmin, set by con�guration

information, and enforce: Rmin <= R <= T <= Tmax.

When a sender or receiver stops sending refreshes or a route change isolates a part of the path,

the state in the nodes times out. However, we wish to avoid delaying the timeout of each hop

by approximately one refresh period from the timeout of the preceding hop, i.e., avoid making

the timeout time for the last node in the path increase linearly with the number of hops. This is

avoided by the No-Refresh bit in Path and Resv messages.

� When a node has received no refresh message at the end of its current refresh period, it sends

a (non-)refresh message with the No-Refresh bit on.

Expires: April 1994 25

� A message with the No-Refresh bit is forwarded immediately hop-by-hop to the end of the

path (unless it is lost).

� At each node, the receipt of a message with the No-Refresh bit on suppresses sending a refresh

message at the end of the current refresh period.

� Receipt of a message with the No-Refresh bit on does not reset the T timer for the corre-

sponding element(s).

In a perfect world these No-Refresh messages will cause all following nodes to time out at the same

time. Due to small variations in timing, the actual behavior may be more complex, but all nodes

should time out at approximately the same time.

The receiver should be conservative about reacting to certain error messages. For example, during a

route change a receiver may get back \No Path" error messages until Path messages have propagated

along the new route.

When Resv messages are merged, the message that is forwarded will carry the largest
owspec

and the corresponding RecvAddress from the merged messages. If the same largest
owspec oc-

curs in two or more merged messages, the resulting message should carry the numerically largest

RecvAddress. This choice will ensure success of loop detection using the RecvAddress �eld.

3.4 Sending RSVP Messages

Under overload conditions, lost RSVP control messages could cause the loss of resource reservations.

It recommended that routers be con�gured to give a preferred class of service to RSVP packets.

RSVP should not use signi�cant bandwidth, but its delay needs to be controlled.

An RSVP Path or Resv message consists of a small root segment (24 or 28 bytes) followed by a list

of descriptors. The descriptors are bulky and there could be a large number of them, resulting in

potentially very large messages. IP fragmentation is inadvisable, since it has bad error character-

istics. Instead, RSVP-level fragmentation should be used. That is, a message with a long list of

descriptors will be divided into segments that will �t into individual datagrams, each carrying the

same root �elds. Each of these messages will be processed at the receiving node, with a cumulative

e�ect on the local state. No explicit reassembly is needed.

3.5 Automatic Tunneling

It is impractical to deploy RSVP (or any protocol) at the same moment throughout the Internet,

and RSVP may never be deployed everywhere. RSVP must therefore provide correct protocol

operation even when two RSVP-capable routers are joined by an arbitrary \cloud" of non-RSVP

routers.

Expires: April 1994 26

RSVP will automatically tunnel through such a non-RSVP cloud. Both RSVP and non-RSVP

routers forward Path messages towards the destination address using their local uni-/multicast

routing table. Therefore, the routing of Path messages will be una�ected by non-RSVP routers in

the path. When a Path message traverses a non-RSVP cloud, the copies that emerge will carry as

a Previous Hop address the IP address of the last RSVP-capable router before entering the cloud.

This will cause e�ectively construct a tunnel through the cloud for Resv messages, which will be

forwarded directly to the next RSVP-capable router on the path(s) back towards the source.

This automatic tunneling capability of RSVP has a cost: a Path message must carry the session

DestAddress as its IP destination address; it cannot be addressed hop-by-hop. As a result, each

RSVP router must have a small change in its multicast forwarding path to recognize RSVP messages

(by the IP protocol number) and intercept them for local processing. See Section 3.6.5 below.

(There is a potential defect in tunneling. Merged Path messages can carry information for a list

of senders, and since multicast routing depends in general upon the sender, it is not possible to

ensure that all the non-RSVP routers along the tunnel will be able to route the packet properly.

The e�ect turns out to be that tunnels may distribute path information to RSVP routers where it

should not go, which may in turn lead to unused reservations at these routers. This is hoped to be

an acceptable defect.)

Of course, if an intermediate cloud does not support RSVP, it is unable to perform resource reserva-

tion. In this case, �rm end-to-end service guarantees cannot be made. However, if there is su�cient

excess capacity through such a cloud, acceptable and useful realtime service will still be possible.

3.6 Interfaces

3.6.1 Reservation Parameters

The Flowspec format is currently speci�c to the CSZ packet scheduler [CSZ92]. The parameters

are:

� QoS Type (Guaranteed, Predictive, ...)

� Max end-to-end delay

� Average data rate (bits/ms)

� Token bucket depth (bits)

� Global share id <|- ?

Although a �lterspec may be in part opaque, RSVP must be able to extract the sender IP address

(or wildcard) from it, and to compare it with a sender template �eld in the path state. For

Expires: April 1994 27

compactness and simplicity of processing, this version of the RSVP speci�cation de�nes an RSVP

Filterspec to be composed of an explicit IP address plus a variable-length mask-and-value pair VF,

in the following format:

+-----------+-----------+-----------+-----------+

| Sender IP Address |

+-----------+-----------+-----------+-----------+

| VFlength | VFoffset |

+-----------+-----------+-----------+-----------+ ---

| V: VF Value Part | 4*VFlength

/ / octets

/ /

+-----------+-----------+-----------+-----------+ ---

| M: VF Mask Part | 4*VFlength

/ / octets

/ /

+-----------+-----------+-----------+-----------+ ---

The value M and the mask V each have length 4�VFlength octets. M and V de�ne a �lter using

a simple mask-and-match algorithm applied to the packet at 4�VFo�set octets from the beginning

with the transport-layer header. VFlength can be zero, in which case V Foffset is ignored. A

"wildcard" Filterspec that will match any sender or receiver has the IP address and the VFlength

both zero. The contents of M and V are opaque to RSVP. The VF part may or may not include

the sender IP address or DestAddress; RSVP will embed these explicit addresses into the �lterspec

before handing it to tra�c control. In general, RSVP cannot interpret the contents of the V and

M �elds, since they may depend upon protocols above the Internet layer.

There are many possible �lters that cannot be expressed using a simple mask and value pair. A

compact and general �lter encoding is for further study.

3.6.2 Application/RSVP Interface

This section describes a generic API from an application to an RSVP control process. The details

of a real interface may be operating-system dependent; the following can only suggest the basic

functions to be performed. In particular, some of these calls cause information to be returned

asynchronously.

An application could directly send and receive RSVP messages, just as an application can do �le

transfer using UDP. However, we envision that many applications will not want to know the details

of RSVP operation, nor to provide the timing services necessary to keep the state refreshed, any

Expires: April 1994 28

more than an application wants to handle TCP retransmission timeouts. Therefore, a host using

RSVP may be expected to have an RSVP control process to handle these functions. Using local

IPC, applications will register or modify resource requests with this process and receive noti�cations

of success or change of conditions.

1. Sender

Call: SENDER(local socket, session socket,
owspec) � > sid

This call is made by a sender host for each sender socket, to initiate RSVP processing.

Wildcards may be inserted for the IP address and/or RSVP Id in the local socket, in which

case the local system will choose appropriate values. The session socket consists of the uni-

/multicast address of the receiving host(s) and the RSVP Id to use for this session.

The SENDER call returns immediately with a local session identi�er \sid", which may be

used in subsequent calls. A local session control block is created and initialized, and the host

begins sending periodic Path messages.

2. Receiver

Call: RECVER(local socket) � > sid

This call is made by a receiver host for each receiver socket, to initiate RSVP processing. The

local socket consists of the uni-/multicast address for the desired session, and an RSVP Id.

The RECVER call returns immediately with a local session identi�er \sid", which may be

used in subsequent calls. A local session control block is created and initialized, and the host

begins listening for a Path message.

Following this call, data may be returned asynchronously, containing the
owspecs and associ-

ated foreign sockets for sender hosts. Error message(s) may also be returned asynchronously.

3. Reserve

Call: RESERVE(sid, style, Flowspec, Filterspec-list)

A receiver uses this call to make a resource reservation. Style is an integer index indicating

the reservation style.

The �rst RESERVE call following a RECVER call will initiate the periodic transmission of

Resv messages. A later RESV call may be given to modify the parameters of the earlier call;

however, this may result in Admission Control failure.

The RESERVE call returns immediately. Following this call, an error message or a data reply

from the earlier RECVER call may be returned asynchronously.

4. Close

Call: CLOSE(sid)

This call may be made by either sender or receiver to terminate RSVP state for the given

session id. It will delete local state and cease sending refreshes, allowing distributed state to

time out.

Expires: April 1994 29

5. Teardown

Call: TEARDOWN(sid)

This call sends Teardown messages to actively remove state from the routers, and then issues

a CLOSE.

3.6.3 RSVP/Tra�c Control Interface

In each router and host, enhanced QoS is achieved by a group of inter-related functions: a packet

classi�er, an admission control module, and a packet scheduler. We group these functions together

under the heading tra�c control. RSVP uses the interfaces in this section to invoke the tra�c

control functions.

((XXX Need some way to pass the Drop
ag))

1. Make a Reservation

Call: Rhandle = TCAddFlow(Flowspec;Drop

f

lag; [Session�Filterspec[; Sender�Filterspec]])

Returns an internal handle Rhandle for subsequent references to this reservation.

This call passes Flowspec to admission control and returns an error code if Flowspec is

malformed or if the requested resources are unavailable. Otherwise, it establishes a new

reservation channel corresponding to Rhandle, and if Filterspecs are supplied, installs a cor-

responding �lter in the classi�er.

For Fixed-Filter reservation requests, RSVP knows about sharing and calls AddFlow only for

distinct source pipes.

For Dynamic-Filter reservation requests: suppose that the Resv message speci�es a Dynamic

Reservation Count = D, and F
ow descriptors, where 0 <= F <= D. Then RSVP calls AddFlow

D times, and D-F of those calls have null �lterspecs.

2. Switch a Channel

Call: TCModFilter(Rhandle; [newFilterspec])

This call replaces the �lter without calling admission control. It may replace an existing �lter

with no �lter, modify an existing �lter, or replace no �lter by a �lter.

3. Modify Flowspec

Call: TCModFlowspec(Rhandle; oldF lowspec; newFlowspec)

Here newFlowspec may be larger or smaller than oldFlowspec.

4. Delete Flow

Call: TCDeleteFlow(Rhandle)

Expires: April 1994 30

This call kills the reservation and reduces the reference count of, and deletes if the count is

zero, any �lter associated with this handle.

5. Initialize

Call: TCInitialize()

This call is used when RSVP initializes its state, to clear out all existing classi�er and/or

packet scheduler state.

3.6.4 RSVP/Routing Interface

An RSVP implementation needs the following support from the packet forwarding and routing

mechanism of the node.

� Promiscuous receive mode for RSVP messages

Any datagram received for IP protocol 46 is to be diverted to the RSVP program for pro-

cessing, without being forwarded.

� Route discovery

RSVP must be able to discover the route(s) that the routing algorithm would have used for

forwarding a speci�c datagram.

GetUCRoute(DestAddress)� > NextHop; Interface

GetMCRoute(SrcAddress;DestAddress)� > Interface

� Outgoing Link Speci�cation

RSVP must be able to force a (multicast) datagram to be sent on a speci�c outgoing virtual

link, bypassing the normal routing mechanism. A virtual link may be a real outgoing link or

a multicast tunnel.

This is necessary because RSVP sends di�erent copies of outgoing path messages on di�erent

links, even though all of them use the same source and destination addresses.

� Discover (Virtual) Interface List

RSVP must be able to learn what virtual interfaces exist.

4 ACKNOWLEDGMENTS

Lixia Zhang, Scott Shenker, Deborah Estrin, Dave Clark, Sugih Jamin, Shai Herzog, Steve Deering,

Bob Braden, and Daniel Zappala have all made contributions to the design of RSVP. We are grateful

to Jamin and Herzog for prototype implementations. The original protocol concepts for RSVP arose

out of discussions in meetings of the End-to-End Research Group.

Expires: April 1994 31

References

[CSZ92] Clark, D., Shenker, S., and L. Zhang, Supporting Real-Time Applications in an

Integrated Services Packet Network: Architecture and Mechanisms, Proc. SIG-

COMM '92, Baltimore, MD, August 1992.

[ISInt93] Braden, R., Clark, D., and S. Shenker, Integrated Services in the Internet Archi-

tecture: an Overview, working draft, October 1993.

[IServ93] Shenker, S., Clark, D., and L. Zhang, A Service Model for an Integrated Services

Internet, working draft, October 1993.

[RSVP93] Zhang, L., Deering, S., Estrin, D., Shenker, S., and D. Zappala, RSVP: A New

Resource ReSerVation Protocol, IEEE Network, September 1993.

